A weak Grothendieck compactness principle

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Weak Grothendieck Compactness Principle

The Grothendieck compactness principle states that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. In this article, an analogue of the Grothendieck compactness principle is considered when the norm topology of a Banach space is replaced by its weak topology. It is shown that every weakly compact subset of a Banach space is contained in...

متن کامل

A Weak Grothendieck Compactness Principle for Banach spaces with a Symmetric Basis

The Grothendieck compactness principle states that every norm compact subset of a Banach space is contained in the closed convex hull of a norm null sequence. In [1], an analogue of the Grothendieck compactness principle for the weak topology was used to characterize Banach spaces with the Schur property. Using a different analogue of the Grothendieck compactness principle for the weak topology...

متن کامل

Dependent Choices and Weak Compactness

We work in set-theory without the Axiom of Choice ZF. We prove that the principle of Dependent Choices (DC) implies that the closed unit ball of a uniformly convex Banach space is weakly compact, and in particular, that the closed unit ball of a Hilbert space is weakly compact. These statements are not provable in ZF, and the latter statement does not imply DC. Furthermore, DC does not imply th...

متن کامل

Smoothness and Weak* Sequential Compactness

If a Banach space E has an equivalent smooth norm, then every bounded sequence in E* has a weak* converging subsequence. Generalizations of this result are obtained.

متن کامل

How Much Weak Compactness Does the Weakly Compact Reflection Principle Imply?

The weakly compact reflection principle Reflwcpκq states that κ is a weakly compact cardinal and every weakly compact subset of κ has a weakly compact proper initial segment. The weakly compact reflection principle at κ implies that κ is an ω-weakly compact cardinal. In this article we show that the weakly compact reflection principle does not imply that κ is pω ` 1qweakly compact. Moreover, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2012

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2012.05.014